طراحي الگوريتم

۵ آذر ۹۸ ملکی مجد

Торіс	Reference
Recursion and Backtracking	Ch.1 and Ch.2 JeffE
Dynamic Programming	Ch.3 JeffE and Ch.15 CLRS
Greedy Algorithms	Ch.4 JeffE and Ch.16 CLRS
Amortized Analysis	Ch.17 CLRS
Elementary Graph algorithms	Ch.6 JeffE and Ch.22 CLRS
Minimum Spanning Trees	Ch.7 JeffE and Ch.23 CLRS
Single-Source Shortest Paths	Ch.8 JeffE and Ch.24 CLRS
All-Pairs Shortest Paths	Ch.9 JeffE and Ch.25 CLRS
Maximum Flow	Ch.10 JeffE and Ch.26 CLRS
String Matching	Ch.32 CLRS
NP-Completeness	Ch.12 JeffE and Ch.34 CLRS

All-Pairs Shortest Paths

the problem of finding shortest paths between all pairs of vertices in a graph.

The Floyd-Warshall algorithm

Use dynamic-programming negative-weight edges may be present, but we assume that there are no negative-weight cycles

The structure of a shortest path definition + assumption

- an *intermediate* vertex of a simple path p is any vertex of p other than *start* and *destination*
- For any pair of vertices *i*, *j* ∈ *V*, consider all paths from *i* to *j* whose intermediate vertices are all drawn from {1, 2, ..., k}, and let *p* be a minimum-weight path from among them.
- whether or not k is an intermediate vertex of path p
 - Yes
 - *No*

The structure of a shortest path relationship

- If k is not an intermediate vertex of path p
 - all intermediate vertices of path p are in the set $\{1, 2, ..., k 1\}$.
- If *k* is an intermediate vertex of path *p*
 - we break *p* down into paths p1 from *i* to *k* and path p2 from k to *j*
 - *p1* is a shortest path from *i* to *k* with all intermediate vertices in the set $\{1, 2, ..., k 1\}$.
 - p2 is a shortest path from vertex k to vertex j with all intermediate vertices in the set $\{1, 2, ..., k 1\}$.

A recursive solution to the all-pairs shortest-paths problem

$$\begin{aligned} d_{ij}^{(0)} &= w_{ij} \\ \hline d_{ij}^{(k)} &= \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases} \\ d_{ij}^{(n)} &= \delta(i, j) \end{aligned}$$

Computing the shortest-path weights bottom up

```
FLOYD-WARSHALL(W)

1 n \leftarrow rows[W]

2 D^{(0)} \leftarrow W

3 for k \leftarrow 1 to n

4 do for i \leftarrow 1 to n

5 do for j \leftarrow 1 to n

6 do d_{ij}^{(k)} \leftarrow \min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

7 return D^{(n)}
```

Example let's solve togerther!

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} = \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \end{pmatrix}$$

result

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad \Pi^{(5)} = \begin{pmatrix} \text{NIL} & 3 & 4 & 5 & 1 \\ 4 & \text{NIL} & 4 & 2 & 1 \\ 4 & 3 & \text{NIL} & 2 & 1 \\ 4 & 3 & 4 & \text{NIL} & 1 \\ 4 & 3 & 4 & 5 & \text{NIL} \end{pmatrix}$$

Time complexity

- the algorithm runs in time $\Theta(n3)$
- code is tight, with no elaborate data structures, and so the constant hidden in the Θ -notation is small.

• the Floyd-Warshall algorithm is quite practical for even moderatesized input graphs. Constructing a shortest path

.

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty ,\\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty . \end{cases}$$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{cases},$$

Transitive closure of a directed graph

- Given a directed graph G = (V, E) with vertex set $V = \{1, 2, ..., n\}$, we may wish to find out whether there is a path in G from i to j for all vertex pairs $i, j \in V$.
- The *transitive closure* of *G*:
 - The edge (i, j) means that there is a path from vertex i to vertex j in G

Transitive closure of a directed graph **A recursive definition**

$$t_{ij}^{(0)} = \begin{cases} 0 & \text{if } i \neq j \text{ and } (i, j) \notin E \\ 1 & \text{if } i = j \text{ or } (i, j) \in E \end{cases},$$

and for $k \ge 1$,
$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor \left(t_{ik}^{(k-1)} \land t_{kj}^{(k-1)} \right) .$$

TRANSITIVE-CLOSURE(G) $n \leftarrow |V[G]|$ 1 for $i \leftarrow 1$ to n2 3 **do for** $j \leftarrow 1$ **to** n4 do if i = j or $(i, j) \in E[G]$ then $t_{ij}^{(0)} \leftarrow 1$ else $t_{ij}^{(0)} \leftarrow 0$ 5 6 7 for $k \leftarrow 1$ to n **do for** $i \leftarrow 1$ **to** n8 **do for** $j \leftarrow 1$ **to** n9 **do** $t_{ij}^{(k)} \leftarrow t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)})$ 10 return T⁽ⁿ⁾ 11

• How can the output of the Floyd-Warshall algorithm be used to detect the presence of a negative-weight cycle?

• Give an O(V E)-time algorithm for computing the transitive closure of a directed graph G = (V, E).