SESTSUIPSE

A 510



Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS




All-Pairs Shortest Paths

the problem of finding shortest paths between all pairs of vertices in a graph.



The Floyd-Warshall algorithm
Use dynamic-programming
negative-weight edges may be present,
but we assume that there are no negative-weight cycles



The structure of a shortest path
definition + assumption

* an intermediate vertex of a simple path p is any vertex of p other
than start and destination

* For any pair of vertices i,j € V, consider all paths from i to j whose
intermediate vertices are all drawn from {1, 2, ..., k}, and let p be a
minimum-weight path from among them.

* whether or not k is an intermediate vertex of path p
* Yes
* No



The structure of a shortest path
relationship

* If kis not an intermediate vertex of path p
* all intermediate vertices of path p are in the set {1,2,...,k — 1}.

* If kis an intermediate vertex of path p
* we break p down into paths p1 from i to k and path p2 from k to j

e plis a shortest path from i to k with all intermediate vertices in the set
{1,2,...,k—1}.

* p2is a shortest path from vertex k to vertex j with all intermediate vertices in
theset{1,2,...,k — 1}.



p: all intermediate vertices in {1, 2, ..., k}



A recursive solution to the all-pairs shortest-paths problem

0)

d;;” = wjj

d(k) {wi_j itk =0 '
L = : (k—1) (k—1) (k—1) .
1.] -




Computing the shortest-path weights bottom up

FLOYD-WARSHALL (W)
Il n < rows|W]|

2 DO W

3 fork < 1ton

4 do fori < 1 ton
S do for j < 1ton

6 do d;f) < min (c‘/lf;“_l). d!.(;f_“ 1 d,f_j‘f_”)
7 return D"



Example
let’s solve togerther!

( B 3 8 o —4\ (NIL 1 1 NIL 1 \
o 0 o0 | 7 NIL NIL NIL 2 2
DO—-| 00 4 0 o0 o0 nO® =] Nni 3 NIL NIL NIL
2 oo -5 0 o0 4 NIL 4 NIL NIL

\o©c c© oo 6 0) \NIL NIL NIL 5 NIL




result

— p— p— p— —

11



Time complexity

* the algorithm runs in time ®(n3)

 code is tight, with no elaborate data structures, and so the constant
hidden in the ®-notation is small.

 the Floyd-Warshall algorithm is quite practical for even moderate-
sized input graphs.



Constructing a shortest path

0) NIL. O = jorws =60,
T = 1. o -
i) 1 iti # jand w;; < 00 .
k—1 k—1 k—1 k—1
n_(l\') B {7[,(} ) fd( ) d( ) | d( )
ij (k—1) k—1) (A—l) G-ty
Ty itd;; > dy By -

13



Transitive closure of a directed graph

* Given a directed graph G = (V, E) with vertex setV
= {1, 2,...,n}, we may wish to find out whether there is a path in G
from i to j for all vertex pairsi,j € V.

* The transitive closure of G:
* The edge (i,j) means that there is a path from vertex i to vertex j in G



Transitive closure of a directed graph
A recursive definition

o [0 ifi# jand (. ) €E .

i =11 ifi=jor( j)eE.

and for k > 1.

(k—1) L (k—1) (/\'—l))

(k) _
TR U ¥

tij =1

15



TRANSITIVE-CLOSURE(G)

1 n < |V[G]]

2 fori < 1ton

3 do for j < lton

4 doifi = jor(i, )€ E[G]
5 then 1 « 1

6 else 1 <0

7 fork < 1ton _

8 dofori < I ton

9 do for j < 1ton
10 do 1Y « 17V v (1
11 return 7" ' |

(k—=1)
ik

(k=1)

)

16



* How can the output of the Floyd-Warshall algorithm be used to
detect the presence of a negative-weight cycle?

* Give an O(V E)-time algorithm for computing the transitive closure
of a directed graph ¢ = (V,E).



